ESD-TR-66-119 MTR-22

ESD-TR=66~119
ESTI FILE COPY

ESD RECORD COPY ESD ACCESSION LIST

SRR T ESTI Call No. AL 51343

SCIENTIFIC & TECHNICAL INFORMATION DIVISION Copy No. ) of / 58,
(ESTI), BUILDING 1211 7

! COMPARISON OF GENERAL PERTURBATIONS
AND SPECIAL PERTUBATIONS EPHEMERIDES

JUNE 1966

E. H. Larson
J. B. Frazer

Prepared for

SYSTEM PROGRAM OFFICE (496L/474L)
SURVEILLANCE & CONTROL SYSTEMS
. ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massaehusetts

Project 4965
Distribution of this document is unlimited. Prepared by

THE MITRE CORPORATION
Bedford, Massaehusetts

Contract AF19(628)-5165

G Lo 337




When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.



ESD-TR-66-119 MTR-22

COMPARISON OF GENERAL PERTURBATIONS
AND SPECIAL PERTUBATIONS EPHEMERIDES

JUNE 1966

E. H. Larson
J. B. Frazer

Prepared for

SYSTEM PROGRAM OFFICE (496L/474L)
SURVEILLANCE & CONTROL SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

L.. G. Hanscom Field, Bedford, Massachusetts

Project 4965

IVDistribution of this document is unlimited. Prepared by

THE MI'TRE CORPORATION
Bedford, Massachusetts

Contract AF 1%(628)-5165




ABSTRACT

The accuracy of the SPACETRACK General Perturbations program over
short periods is evaluated for a number of cases. They show that oscillatory
terms resulting from drag perturbations contribute heavily to errors at low
altitudes, and that these terms must be eliminated if the first order theory
is to be used for high accuracy in these circumstances. It appears that the
evaluation technique employed would be useful in addressing a number of
other problems; several promising applications are discussed.
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GLOSSARY

cross-sectional area

semimajor axis

drag coefficient

eccentricity

atmospheric scale height

perigee in distance above earth's surface
mean longitude

mass of satellite
1 ’
> rate of change of mean motion

period

perigee in distance from center of earth
time since epoch

velocity of satellite with respect to air mass
ballistic coefficient

atmospheric density

atmospheric density at perigee

dimensionless drag parameter = p0 B q

vi



SECTION I

INTRODUCTION

In the SPACETRACK System, it is customary to use a special pertur-
bations program* when a high degree of accuracy is desired over a short
interval of time. The purpose of this investigation is to determine whether
and under what circumstances a first order general perturbations program**
may be used instead; and if possible, determine whether any modifications
to it are feasible. The interval of time considered in this study is of the
order of 1-1/2 days, and thus interest is in accuracy of the order of 1 km.

Most of the study deals with low altitudes since drag is the perturbative

force.

There already was in existence before the start of this investigation a
program called DCMOD64, written by the Aeronutronic Division of the Philco
Corporation, well suited for the purpose of making comparisons. In fact,
without this program's prior existence, it would have been impossible to
finish this study in a reasonable time. Other investigators have already used

(1]

this program for similar studies. In this study, we are concerned with a

shorter period for the approximation interval and higher accuracies.

s
A program in which the effects of the perturbing forces are numerically

integrated.

% %
A program which employs an analytic theory of the effects of perturbing

forces.



SECTION II

DESCRIPTION OF COMPUTER PROGRAM

[2]

The DCMOD64 program includes an orbital element correction routine,
and several ephemeris computation subroutines. We have used a special
option of this program for our study. In this option, the special perturbations
subroutine generates an ephemeris from an initial set of orbital elements.
This is then converted into 400 equally spaced (in time) observations from a
hypothetical radar with spherical coverage. Then the general perturbations
subroutine is used in the element correction routine to fit these observations.
The final output is a table of discrepancies between the special and general
perturbations ephemerides. The first order general perturbations theory
is equivalent to Lyddane's modification of the Brouwer theory; it should achieve
precisions on the order of 1 part in 106, or 1 microradian, over 103 radians
of satellite motion, insofar as perturbations due to the earth's potential are
concerned. Only the 3 largest zonal harmonics, J2 - J4, are included in the
formulation. The subroutine also includes a formulation for the perturbative
effects of solar radiation pressure, which were of little significance in this
study. Other perturbations, of which air drag is the most significant, are

accommodated by two empirical terms in the mean anomaly equation, n/2

and n/6 , So that a correction to the mean anomaly is given in the form

where t is time since epoch.

Related corrections to the semimajor axis and the eccentricity are derived
from these parameters under the assumption of constant perigee height. The

special perturbation subroutine that generates the ephemeris takes into account



eight zonal harmonics, four tesseral harmonics, atmospheric drag, solar
radiation pressure, and lunar and solar gravitational perturbations. It is
possible to omit any or all of these in any run. The atmosphere model takes
into account the diurnal bulge as well as solar activity, but these are not
effective at the altitudes chosen for this study. The ballistic coefficient, 3 ,
is assumed constant. For the puspose of this study, it was necessary to

modify the DCMOD program with octal corrections to make the time period

*
36 hours.

*
The authors are indebted to the cooperation and programming assistance of

J. Kuhlman of Aeronutronic for obtaining data successfully.

3



SECTION III
DESCRIPTION OF CASES
Several different classes of satellites were simulated. All were specified

by their initial osculating elements. All had an initial inclination of 49 degrees.

Initial perigees used were:

h (km) h (km)
160 87.7
200 109.6
250 137.0
300 164.4

These were used in combination with initial eccentricities of:

. 001
01

(o= I = i e i e I @ B @ ]
—

Various combinations of the perigees and eccentricities were used in the
program under three different classes of perturbations in the special pertur-

bations program:
(a) all perturbations;

(b) only second, third, and fourth zonal harmonics of earth's potential;

and

(c) only atmospheric drag and second, third, and fourth zonal harmonics

of earth's potential.



It was originally intended that all satellites have the same ballistic
coefficient, § . The value 0. 02 mz/kg was tried, since this appears to be
a high average,[g] and results using this value should be conservative.
However, for some low-altitude satellites with small eccentricities, the

special perturbations subroutine would not run 36 hours with this value, pre-

sumably because of decay, and so the smaller values listed in the tables were

used in these cases.




SECTION IV

SUMMARY OF RESULTS

Thirty-six different cases were run; the results are summarized in Tables
I, II, and III. Each of these tables presents the distinguishing initial conditions
followed by columns containing five mean parameters determined by AGP;*
viz, h (computed perigee), e (eccentricity), a (semimajor axis), P (period),
and n/2 (rate of change of mean motion). These are followed by the errors
in 36 hours of simulated time. The RMS error is the root mean square of all
400 error vector magnitudes in the 36-hour period. The maximum error is

the maximum magnitude of the 400 vector errors in the same time period.

Table I contains the cases wherein all perturbations are included. Table
II presents the cases wherein the only perturbations are the 2nd, 3rd, and
4th zonal harmonic terms of the earth's potential. Table IIl, which presents
the cases inwhich the only perturbations are atmospheric drag and the oblate
earth terms, contains two additional columns, the first of which is adjusted
RMS errors. These are the RMS values adjusted by multiplying the factor
0.02/8. This is done to facilitate comparison of results for different cases
since, presumably, errors are roughly proportional to the ballistic coefficient.
The figures in the other additional column are normalized RMS errors. These
are nondimensional quantities consisting of the RMS error value divided by
the quantity (ax/e), where X = poB q is a nondimensional parameter which
gives the order of magnitude of the errors due to atmospheric drag. A fuller

discussion of these quantities is presented later.

*
AGP is the acronym of the general perturbations routine designed for non-
equatorial cases.
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A point of interest that does not appear in these tables is the nature of
the error as a function of time, or alternatively, as a function of true agrument
of latitude. Generally speaking, in the cases in which only atmospheric and
zonal harmonic perturbations are considered, the out-of-plane component is
an order of magnitude smaller than the other two components. Both the
along-track and radial components have a decidedly oscillatory behavior,
with maximum amplitude at the ends of the simulation interval and a phase
change near the center of the interval. Figure 1 shows the three components
of the error as a function of observation number, which is proportional to
time, for job 213, which may be regarded as archetypical of the runs in

Table III.

10
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SECTION V

DISCUSSION OF RESULTS

GENERAL

The runs in Table I were made primarily to determine regions wherein
the first-order general perturbations theory is adequate by comparison with
the best available model of the real world. They clearly show that for satel-
lites with a 160-km perigee, the theory will give errors much larger than
1 km for eccentricities less than 0.01. A comparison with the cases in
Table III at this same perigee shows a very high correlation. This strongly
suggests that, at this perigee, the oblate earth and atmospheric perturbations
are the only ones which are significant for short periods. This was the reason
for confining the rest of the study to an examination of drag effects. A com-
parison of the data at the 300-km perigee shows a much poorer correlation —
other perturbations are much more significant in proportion — but the others
would still be small enough to be acceptable if the drag errors could be
eliminated. In general, the data in Table I suggest that the existing first-

order theory is adequate for any altitude above 350 km.

The runs in Table II, with only J 9~ J 2 zonal harmonic perturbations,

were intended to provide a comparison for the runs in Table III which has

atmospheric drag as well as the J Ag J, zonal harmonic perturbations.

4
Since the first-order theory accounts for these zonal harmonic perturbations,
the errors should be on the order of 6 to 18 meters for all Table II cases.

The reason they are not zero is not entirely clear.

Part of the difference arises from the fact that the J2 - J4 values
stored in the special and general perturbations subroutines do not agree.

This disagreement arises because the special perturbations set, with

12



12 parameters, and the general perturbations set, with 3 parameters, have

been independently adjusted for a best fit with the observed motion of satellities.
This discrepancy was not discovered sufficiently early in the study for cor-
rective measures to be taken. As a check on the significance of the discrepancy,
job 115 was rerun. The maximum error was reduced from 308 meters to

18 meters, while the RMS error was reduced from 68 meters to 6, 8 meters.
The oscillatory pattern of the errors remains, but there is no apparent

tendency for the amplitude of the oscillation to grow with time.

A second phenomens is evident in Table II: the errors grow with de-
creasing eccentricity. It is possible that this is due to the discrepancy in

the J2 - J, terms; on the other hand, it may reflect numerical problems

4
in the element correction process.
The convergence of the solutions appeared to be rather slow in all cases;
*
from 6 to 8 Phase II iterations were usually required for convergence to

a 1-percent change in the RMS of the vector magnitudes.

DRAG EFFECTS

Table III presents the errors in runs with drag perturbations as well as
the J2 - J4 zonal harmonics. Since the general perturbations subroutines
account for the harmonics with the accuracies given in Table II, the additional
errors in these cases must be due to drag alone or to cross-coupling between
drag and zonal harmonics. The magnitude of the acceleration of a satellite
due to drag is given by

1t 2
5 PV E

*
In Phase I, only the mean anomaly or '"time' equation is corrected; in
Phase II, all elements are corrected.

13




where p is the density, v is the velocity with respect to the air mass, and

B , the ballistic coefficient, is given by
g = CD A/m ,

where CD is the drag coefficient, A is the cross-sectional area of the

satellite, and m is its mass.

In general, as a satellite rotates, neither CD nor A remains constant
so that B varies with the orientation. However, for satellites in which the
ratio of the longest to shortest dimension is no larger than two or three, the
product does not vary very much, and, for a given satellite, B varies per-
haps by 20 percent or less.[lﬂf However, B does vary considerably from
one satellite to another because of differences of mass. The value of 0.02

2
m /kg used in the simulation is conservative in that few satellites could be

expected to have a larger value.

Air density, p , decreases quite rapidly with altitude. For altitudes

between 160 and 300 km, the scale height, H, given by

H=-p/-3—;v

(5]

is of the order of 25 to 50 km.

Since perigee does not change very rapidly for satellites above 200 km,

a useful dimensionless parameter that given the scale of perturbations is
X=p,8 9,

where po is density at perigee, q .

*
Pages 12 to 17.

14



The last column of Table III shows a definite correlation between RMS
errors and aX/e. The reason for the inverse variation of the RMS errors
with eccentricity is not known. Quite possibly the problem will prove to be
identical to that in the nondrag cases of Table II; the amplitude and growth

of the oscillations, however, is substantially greater.

In an analysis in terms of coordinates, Geyling[G] obtained terms similar
to this. His factor of proportionality does not appear to vary inversely as
the eccentricity; perhaps this is because his atmospheric density model is
independent of altitude. Analysis along these lines, using a more realistic
density model, might show results similar to those obtained here, although,
at best, preliminary analysis has shown a variation inversely as the square

root of the eccentricity.

15




SECTION VI

CONCLUSIONS

The techniques employed for this study have considerable potential for
studying the performance of the DCMOD64 element correction routines. The
rather slow convergence and possible poor performance for low eccentricity
deserve further study. Other areas of interest include the dependence of
quality of fit on amount of data and length of arc. By using an identical
ephemeris subroutine for data generation and fitting, it is possible to check
numerical and partial derivative problems. By using special and general
perturbations routines with identical harmonics, it is possible to crosscheck
the mathematical formulations, to determine the intervals over which the
routines remain valid and to determine what length of fit is necessary to
prevent second order terms in the semimajor axis from propagating into
the mean motion. By using the full set of harmonics in the special pertur-
bations subroutine and the J 9 ~ J 4 set in the general perturbations sub-
routine, the need for additional general perturbations formulations can be

assessed.

Similar tests can be made for the tesserals and drag perturbations. In
the case of drag perturbations, it may well be the optimal procedure to
develop additional general perturbations formulations based on an empirical
analysis of the periodic residuals (for periodic terms), and on the analysis of
mean elements for overlapping arcs (for secular terms). Among the more
obvious questions that can be resolved by such techniques are the extent of
gravitational drag cross-coupling in the motion of node and perigee, and

the secular behavior of eccentricity.

For greater consistency and to avoid errors in using subsets of the full

potential model, it is suggested that the DCMOD64 control logic for the

16



special perturbations subroutine be modified to permit selection of optimized
subsets of the zonal and tesseral harmonics, rather than selective inclusion
or deletion of individual harmonics. Based on reports in the literature of
the techniques used to determine the harmonics, it is probably possible to
treat even zonals, odd zonals, low-order tesserals (n = 8), and high-order
tesserals (n = 13) as four independently optimized subjects. Suggested
options would include the general perturbations subroutine values of J2 -Jd .
the current full set of zonals (J2 - J9 or J2 - J14) , and the full set of

zonal harmonics plus all available tesserals.

17
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